AES 126th Loudspeaker FEA/BEM Workshop Panelist: Peter Larsen LOUDSOFT

Invited Participant Companies; LOUDSOFT loudsoft.com - Peter Larsen R and D Team randteam.de - Joerg Panzer Pafec vibroacoustics.co.uk - Patrick Macey CAPA Wisoft.de - Hermann Landes Klippel klippel.net - Wolfgang Klippel Tymphany Tymphany.com – Richard Little

TTTH

Loudspeaker FE/BE Modeling Workshop:

This workshop will explore FE/BE modeling of loudspeaker drivers. A case study of an existing loudspeaker driver will be modelled by each panellist to benchmark the capabilities of their modeling software package. A loudspeaker driver dimensions and material properties will be provided to panellists in advance of the convention so that they may develop a thorough model for presentation at the workshop. Results will be discussed along with measurement analysis of the real loudspeaker driver.

FINELab[™]QC Loudspeaker/Transducer Production Test system

FINEMotor™ Magnet System & Voice Coil Design Program

FINECone[™] Acoustic Finite Element Dome/Cone Simulation

FINEBox[™] Non-Linear High Power Box Design Program

FINE X-over™ X-over Design Program More than 500 software licenses worldwide

CONSULTING - Peter LarsenSpeaker design for customers using software and experience

AES 126th Loudspeaker FEA/BEM Workshop FINEMotor simulated TS parameters versus measured (Klippel)

Measurement in Vacuum

	In ai	r		In va	cuum		TSP	'aramete	rs		
	in ai	1		iii va	cuum		Sensitivity (2.83V/1.00m)	SPL	79.72	dB	
	Electrical Parameters			Electrical Parameters			VC Resistance DCR	Re	7.00	Ohms	EINIEM at an Des disting
	Re	7.13	Dhm	Re	7.04	Ohm	Resonance	Fs	161.00	Hz	FINEMOTOR Prediction
	L8 12	0.046	mH mH	L0 12	D.048 D.109	mH	Mechanical	Qms	4.00		of TS Parameters
	R2	1.84	Dhm	R2	1.96	Ohm	Electrical	Qes	1.27		
	Cries	182.02	uF	Cmes	162.01	uF	Total	Ots	0.96		
	Lces	5.38	mH	Lces	5.51	mH	Equivalent air vol	Vas	0.00		Flux Profile
	Res	21.14	Ohm	Res	16.93	Ohm	Compliance	Cmo	0.23	mm/N	Flux Contour w frame Bn500.txt
	fs	160.8	Hz	fs	16B.4	Hz	Moving Mago(incl. air)	Mmo	4 27	2	
			=				Moving mass(inci. air)	mins DI		9 T	
	Mechanical Paramete Austra Incerv	:15		Mechanical Parameter:	5				2.00	100	
	Mas	1 277		Mras	1.095		Eff. diaphragm area	Sd	15.33	sq.cm	
Ц	P105	1.277	y		1.095	9	Lin. Excursion +/-	Xmlin	0.87	mm	
	Rms	0.332	ką, js	Rms	D. 399	kg/s			_		
	Cms	0.767	mm/N	Cms	D.815	mm/N			Bg=0.8147	T	
	Kms	1,30	N/mm	Kms	1.23	N/mm	The predicted BL is	s really	Bd=0.2570)T	
	BI	2.649	N/A	BI	2.600	N/A	close to the Klipper	laser	Bt =1.3174	Т	Z = X
	Lambda s	0.096		Lambda s	D.094		monocuromont	Labor			
	1 (t		_	Laure Frankrise		4	measurement			1	
	Obs rectors	0.092		Dto	D 854					-	Official d 00mm
	Oms	3.667		Oms	2.902						
	Qes	1.311		Qes	1.207					XI	X CONTRACTOR
	Qus	0.981		Qts	D.853				1		
	Yas	0.2443	×	Vas	D.2596				1		
	< III	10.014	>		0.000						
								4			
				Klippel, Loudsp	eaker Ana	lysis, Wo	rkshop AES 2009, 5				

AES 126th Loudspeaker FEA/BEM Workshop FINEMotor simulated BL(x) versus measured (Klippel)

Dominant Nonlinearities: Bl(x)

FINEMotor BL(x) Calculation

Predicted by FINEMotor:

XBL @ 82% BLmin =1.35mm. The shape and symmetry of the BL(x) curve is extremely close to that measured by Klippel

◀▶

Klippel, Loudspeaker Analysis, Workshop AES 2009, 13

Instant TS parameters Non-linear BL(x) curves Flux profile with VC Offset Ferrofluid simulation Thermal compression model

Mechanic		leters	24.362
Layers	n	2	
Wire Material		Copper	
Wire Type		Round	
Wind Width	WW	15.55	mm
Number of Windings	N	133.67	
Nom.(bare) Wire diam	BWD	0.200	mm
Total Winding OD	WOD	26.63	mm
Total Winding Mass	Mvc	3.157	g
Stretch		4.00	%

Sensitivity (2.83V/1.00m)	SPL	87.95	dB
VC Resistance DCR	Re	6.20	Ohms
Resonance	Fs	38.43	Hz
Mechanical	Qms	6.00	
Electrical	Qes	0.45	
Total	Qts	0.42	
Equivalent air vol.	Vas	39.35	1
Compliance	Cms	1.54	mm/N
Moving Mass(incl. air)	Mms	11.16	q
Force Factor	BI	6.07	Tm
Eff. diaphragm area	Sd	134.99	sq.cm
Lin. Excursion +/-	Xmlin	5.28	mm

AES 126th Loudspeaker FEA/BEM Workshop FINECone FEA versus measured response

AES 126th Loudspeaker FEA/BEM Workshop **Influence of Initial and Final FEA Material Parameters**

AES 126th Loudspeaker FEA/BEM Workshop FEA Cone Damping

AES 126th Loudspeaker FEA/BEM Workshop FEA Cone Young's Modulus

AES 126th Loudspeaker FEA/BEM Workshop FEA Impedance Simulation

AES 126th Loudspeaker FEA/BEM Workshop FEA cone Displacements

AES 126th Loudspeaker FEA/BEM Workshop FEA Directivity and Dispersion

AES 126th Loudspeaker FEA/BEM Workshop Lumped Parameters to/from FEA

oustic Components				
Effective Area	Sd	15.33	sq. cm	
Effective Diameter	D	4.42	cm	15.33 Area
Fixed Mass	Mms-Mvc	0.90	g	4.42
Specify Qms	Qms	4.00		
Estimate Qms (from VC Former mat.)		3.00		
Specify Fs	Fs	147.00	Hz	
Jse calculated Fs		97.80	Hz	
Cone+Surround Resonance	Fo	62.57	Hz	Lumped parameters
Surround Compliance (Approx.)	Cms(sur)	7.19	mm/N	CALIACIEU II UII
Spider Load		2.83	g	Former Voice coil Spider Whizzer FINECODO FEA
Spider Resonance (loaded, dyn.)	Fsp	50.00	Hz	
Spider Deflection (loaded, static)		0.10	mm	X4 c., 1485861 mm/N X4 Air mase: 0.026520 a
Spider Compliance		3.58	mm/N	
Spider Flexibility (German Std)		17.90	Fdz	Rs: 0.620760 Nm/s Xd: 13.000000 cm2
)iscard any edits to these parameters	\$			Image: Fs: I22.657116 Hz Lumped parameters
F20012410129	X		X	🔀 Qms 3.060000 General Diaphragm Surround Dust cap
der Resonand	ce de	fined		Mms 1.133000 g Seidersenter
In CINICA		X	XI	
	lotor		KY.	💥 : Imported from FINEMotor (TN Mass. g 0.255850 From Finite element
			X	Mass factor 0.500000 *
				OK Annu Compliance, mm/N 3.577546 * From Finite element
				Resistance, Nm/s 0.210640 * From Finite element
				Items marked with * are optional for this component
				OK Annuller Anvend Hjælp
				OK Annuller Anvend Hjælp

- Very Fast Calculation < 12 sec (100 points)
- Axi-Symmetric modes most important
- Simple 2D input geometry (DXF)
- Built-in Material Database (+ Kurt Müller)
- Extracted Lumped TS parameters
- Low Cost FEA Software

AES 126th Loudspeaker FEA/BEM Workshop FINECone Practical FEA Examples:

25mm Ring Radiator

AES 126th Loudspeaker FEA/BEM Workshop

- 1. Precise information about E-Modulus, and damping of the cone, surround and dust cap was not available for the initial study.
- 2. The previous slides illustrate the very large response variations that are possible when the material parameters are unknown.
- 3. Consequently the 2nd FINECone/FEA Iteration was performed with adjusted mechanical data using the measured Tymphany response as reference

General FEA Conclusion of the Workshop:

The most productive FEA Simulation is done by using SPL response and Impedance measurements as a reference to find the material parameters

AES 126th Loudspeaker FEA/BEM Workshop

LOUDSOFT Conclusions

- •Complete FINECone FEA is setup in few hours
- High resolution response solved in seconds
- •Simple 2D drawings as input
- Standard Windows PC (XP/Vista)
- •FINECone: Problem Solving + Guide Development

Save Development Time

Save Tooling & Costs

